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1. INTRODUCTION and SUMMARY

Semantic analysis of programs is essential in
optimizing compilers and program verification sys-

tems. It encompasses data flow analysis, data type

determination, generation of approximate invariant
assertions, etc.

Several recent papers (among others Cou.sot &
Cousot[77a], Graham $3 Wegman[761, Kam 8 Ullman[76],

Kildall[731, Rosen[781, Tarjan[76], Wegbreit[75])
have introduced abstract approaches to program anal-
ysis which are tantamount to the use of a prmgrwm
cnzazysis j%zmework (A,t,y) where A is a lattice of
(approximate) assertions, t is an [approximate) pred-
icate transformer and Y is an often implicit func-
tion specifying the meaning of the elements of A.
This paper is devoted to the systematic and correct

design of program analysis frameworks with respect

to a formal semantics.
Preliminary definitions are given in Section 2

concerning the merge over all paths and (least]
fixpoint program-wide analysis methods. In Section 3
we briefly define the [forward and backward) deduc-
tive semantics of programs which is later used as a
formal basis in order to prove the correctness of the

approximate program analysis frameworks. Section 4
very shortly recall the main elements of the lattice
theoretic approach to approximate semantic analysis
of programs.

The design of a space of approximate assertions
A is studied in Section 5. We first justify the very
reasonable assumption that A must be chosen such that
the exact invariant assertions of any program must
have an upper approximation in A and that the approx-
imate analysis of any program must be performed using
a deterministic process. These assumptions are shown
to imply that A is a Moore family, that the approxi-
mation operator (with defines the least upper approx-
imation of any assertion] is an upper closure operator
and that A is necessarily a complete lattice. We next
show that the connection between a space of approxi-
nlate assertions and a computer representation is nat-
urally made using a pair of isotone adjoined func-
tions. This type of connection between two complete
lattices is related to Galois connections thus making
available classical mathematical results. Additional
results are proved, they hold when no two approximate
assertions have the same meaning.
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In Section 6 we study and examplify various
methods which can be used in order to define a space
of approximate assertions or equivalently an approx-
imation function. They include the characterization
of the least Moore family containing an arbitrary set
of assertions, the construction of the least closure
operator greater than or equal to an arbitrary approx-
imation function, the definition of closure operators
by composition, the definition of a space of approxi-
mate assertions by means of a complete join congruence
relation or by means of a family of principal ideals.

Section 7 is dedicated to the design of the

approximate predicate transformer induced by a space
of approximate assertions. First we look for a rea-
sonable definition of the correctness of approximate
predicate transformers and show that a local correct-
ness condition can be given which has to be verified
for every type of elementary statement. This local
correctness condition ensures that the (merge over

all paths or fixpointl global analysis of any program
is correct. Since isotony is not required for approx-
imate predicate transformers to be correct it is shown
that non-isotone program analysis frameworks are man-
ageable although it is later argued that the isotony
hypothesis is natural. We next show that among all

possible approximate predicate transformers which can
be used with a given space of approximate assertions
there exists a best one which provides the maximum
information relative to a program-wide analysis
method. The best approximate predicate transformer
induced.by a space of approximate assertions turns
out to be isotone. .Some interesting consequences of
the existence of a best predicate transformer are
examined. One is that we have in hand a formal spec-

ification of the programs which have to be written in
order to implement a program analysis framework once
a representation of the space of approximate asser-
tions has been chosen. Examples are given, including

ones where the semantics of programs Is formalized
using Hoare[78]’s sets of traces.

In Section 8 we shqw that a hierarchy of approx-
imate analysas can be defined according to the fine-
ness of the approximations specified by a program
analysis framework. Some elements of the hierarchy

are shortly exhibited and related to the relevant
literature.

In Section 9 we consider global program analysis
methods. The distinction between “distributive” and
!’non-distributive” program analysis frameworks is
studied. It is shown that when the best approximate
predicate transformer is considered the coincidence
or not of the merge over all paths and least fixpoint
global analyses of programs is a consequence of the
choice of the space of approximate assertions. It is
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shown that the space of approximate assertions can where DdZ(i) is the set of Daths from the entrv
always be refined so that the merge over all paths

L J

analysis of a program can be defined by means of a point ni to the vertex i and ~~ (E*+ (A+A]] is re-

least fixpoint of isotone equations. cursively defined as follows : if p is an empty path
Section 10 is devoted to the combination of

program analysis frameworks. We study and examplify then ~[pl is the identity map on A else p= (q,al

how to perform the “sum”, ‘~product)~ and ~~power~~ of where qcE *, acE and ~(p) =A@.t[C(a)I[~(q) ($)l.
program analysis frameworks. It is shown that comb-
ined analyses lead to more accurate information than
the conjunction of the corresponding separate ana- The system of aquaixbns P=Fm(t,@) [P) czssoeiated

lyses but this can only be achieved by a new design vith the program n us{ng (A,tl
of the approximate predicate transformer induced by follows :
the combined program analysis frameworks.

1

P
n =4

i
P= u t[C[<i,j>

j i cpred(j)
2. PRELIMINARY DEFINITIONS

Ap?ogrczm T is a pair (V,G] where G ima pro-
gram graph and V is the universe in which the pro-
gram variables take their values.

The set L of elementary commands consists in
elementary tests and elementary assignments :
L=LtuL, An elementary test qeL is a total map

t
from cbm~ql~v into ~={tme,j%zse]. An elementary
as.s-tgnment ee La is a total map from dom(e] SV into
v.

A progmm gmph G is a tuple (n,E,n.,n ,C)
10

where n is the number of vertices (therefore n>’11,

Es[l,n]2 is the (non-empty] set of edges, nie[l,n]

is the entry point, no c[l,n] is the exit point and
Cc [E+~l defines the command C[<i,j~l associated

with each <i,j> in E. Let predc[~,n]+2[”n] be

Aj.{ie[l,nl : <i,j>~E} and s~~e~[l,n]+z [I,nl be

Xi.{jc[l,nl : <i,j>c E}, then we assume that

pred(ni) =@, suee(nol =@ and for any vc[l,n]-

{ni,no}, pred(v]#@ and suee(v) *@.

ExaypZe 2.0.1

The program :

~,1 begin

{2}
whiZe xSIOO do {x is an integer variable]

{3}
x := X+1; {no overflow can occur}

{41
Ocz;

end
,

will be represented by its program graph :

l%.

XX. [x<loo]

\

Ax. (x>loo)

ax[x’’oo’ck=;o)?
End of exampZe.

If A(S,l,T,U,n) is a complete lattice,
tc(L+(A+A)) and ~cA then the merge over aZZ paths
anaZysZs of m using [A,t) and @ (MoPm[t,@)) is PcAn
defined as :

Vie[l,nl, Pi = u ;(p) [0)
p~path(i)

and @ is defined as

) [Pil if j.c[l,n]-{nil

Notation : If M(E,l.T,lJ,ll] is a complete lattice
then the set [L+MI of total maps from the set L into
M is a complete lattice (L +-M] (S’,l’,T~,U’,n’) for
the pointwise ordering fE’g iff VXEL, f[x]~g(x].
In the following the distinction between S, 1, T, U,
NandS’, 1’, T’, u’, n’ will be determined by the
context. Also a map f< (L+M] will be extended to

(2L+2M) as ASe2L.{f[x) :xeS} and to (Ln+Mn) as
A<xl ,. ..,xn(< f(xl),), f(xn)>ln)>l .

30 DEDUCTIVE SEMANTICS OF PROGRAMS

3.1 Forward Semantics

The forwa~d semantic anazys’zk of a programm
consists in determining at each program point an in-
variant assertion which characterizes the set of
states which are the descendants of the input states
satisfying a given entry assertion $.

More precisely an assertion is a total map from
V into R. The set A= (V +B)(=>,lX~V.~aZse,
lX~~.true,v,A,-) of assertions is a complete boolean
lattice partially ordered by the implication ‘>.

Let Sp(S] [P) be Floyd[67]’s stron est post-condi-
tion derived from the pre-condition PCf for the ele-

mentary command SL. We assume that the operational

semantics of the elementary commands is such that for
an elementary test we have :

sp(q) =APc~,[AxEV. [P(X) AXedom(q] Aq(x))]

whereas for an elementary assignment e we have :

sp(el =kPcA.CIX<~.[~Y~~ : P(Y) AYedOm[e) AX=e(Y))~

(Notice that for all SEL, SP(SI is a complete join-
morphism (i.e. VAGA, sp(S) (VA] =vsp[S) [A)]).

We assume that the operational semantics of the
program ‘K is such that at each program point i~[l,n]
the invariant assertion pi which characterizes the

set of states which are the descendants of the input
states satisfying a given entry assertion @A is the
merge over all paths analysis of T using Sp and $.
P is the least fixpoint L~p[FT[Sp,’$]] of the system

of equations P ‘Fm[Sp,$] (P) associated with the pro-

gram IT using Sp and $.
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Examp2e 3.1.0,1

The system of forward semantic equations asso-
ciated with the program 2.0.1 is :

I

PI =4

P* = sp(ax.[xslooll (P1vP3)

P3 = SP(XX.[X+II)(P2]

P4 = sp(kx.[x>lool) (P1vP3)

taking @=Ax.(x=ll its least fixpoint characterizes

the descendants of the input states satisfying @ :

I

PI = ax, (x=l]

P2 = lX. (ISXSIOO)

P3 = Ax. (2~x~lol)

P* = Ax. [x=loll

End of Example.

3.2 Backward Semantics

The backward semantic analysis of a program con-

sists in determining at each program point an invari-
ant assertion which characterizes the set of states
which are the ascendants of the output states satis-
fying a given exit specification $.

Since we can consider the inverse of the stat’e
transition rela’cion defined by the operational seman-
tics no new formalism is necessary in order to treat
backward program analysis. Instead of Floydts for-
ward predicate transformer we just have to consider
Hoare[69]-Dijkstra[76]’ s backward predicate trans-
former :

?@(q) =AP<A.[AX.V.(P(XI AXe&m(q] Aq(X])]
#p[e] =lp~A.[LXeV. (Xcdom(e] AP(e(X)))]

(notice that WSCL, tip[S) is a complete join and meet
morphism) and the inverted ppograrn grwph ~J=(n,EJ,nO,

ni,C’) where E~={<i,j> : <j,i>~E}, C’=A<i,j>eE~,

[C(<j,i>ll.

Examp Le 3.2.O.1~

The inverted program graph corresponding to 2.0.1

is :

&

1

ax. [xslool ax. (x>loo)

2 4

Xx. [xsloo) XX. [x+l)
AX. (x>loo)

3.

The corresponding system of backward semantic
equations is

P1=Vp

P2=wp

P3=?Jp

P4=l$

Ax.Ex<looll (P2)vtip[ax.[x> ool)[Pk)

AX.[X+II)(P3)

AX.[XSIOO])(P2) VZJP[AX.[X>’ 001) [P41

The merge over all paths and least fixDoint char-
acterizations of the ascendants of the output states
satisfying the exit specification $=Ax. (x=IOI) are

both equal to :

I

PI = ax. (xslol)

P2 = Ax. (xslool

P3 = Ax. [x<loll

P4 = @ = Ax. (x=loll

End of Example.

In the following no distinction will be made be-
tween forward and backward program analyses because
of the above mentioned symmetry.

4. APPROXIMATEANALYSIS OF PROGRAMS

The semantic analysis of programs cannot be au-
tomatized since neither the merge over all paths nor
the least fixpoint characterization of the invariant
assertions to be generated leads to a computable func-
tion. Therefore optimizing compilers and program
verification systems are only concerned with the dis-
covery of approximate invariants assertions. Here an

approximate invariant assertion Q will be one which
is implied by the exact invariant assertion P defi-

ned by the deductive semantics.

DEFINITION 4.0.1

If P,QGA then “Q approximate P“ iff P=~Q.

This definition of “approximate” is the one which is
useful in logical analysis of programs, data type
determination and data flow analysis.(The dual one
might be useful (e.g. for proving termination)].

The now classical lattice theoretic approach t.o

approximate analysis of programs can be briefly
sketched as follows : the representation of an ap-
proximate assertion is an element of a complete lat-
tice A(~,l,T.U,n). The meaning of the elements of A

is specified by a (tob often implicit)_order morphism
Y mapping A to a subset of assertions A=Y(A) GA. The
intention is that A is an implementable image of
those aspecta Y(AI of the program properties which
are to be understood at each program point whereas
the assertions belonging to A-Y(A) are ignored (that
is approximated from above in Y(A)]. To each elem-
entary command SeL is associated an isot’one map t(S)
from A to A. The intent is that t[S) is an approx-
imate predicate transformer such that t[S)(il repre-
sents the propagation of ‘the information icA through
the etatement S.

The ideal merge over all paths program-wide anal-
ysis (Graham &Wegman[761, Kam&Llllman[77], Rosen[781,
Tarjan[76]) is often approximated by a fixpoint solu-
tion (Cousot &Cousot[77al, Jones RMuchnick[76], Kaplan
& Ullman[78], Kildall[73], Tenenbaum[74],
WegbreitE7511. A fixpoint system of isotone equations
X=F(X) where Fe (An+An) is associated with the pro-
gram graph. The approximate invariant assertions are

generated by computing iteratively the least fixpoint
of F starting from the infimum of An and using any
chaotic or asynchronous iteration strategy (Cousot
[77]) or the least fixpoint is approximated from
above using an extrapolation technique in order to
accelerate the convergence of the iterates whenever A
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does not satisfy the ascending chain condition

(Cou50t&Cousoti 77a11.

The design of A, t, the implicit y and the de-
‘termination of the construction rules for F are

often empirical. The correctness of the least fix-
point analysis is usually proved with respect to the

approximate merge over all paths analysis, the cor-
rectness of which is taken for granted. As opposed
to this empirical approach we now provide a formal

approach ‘to the systematic design of an approximate
program analysi~ framework [A,t,yl given (V,A,T)
where T is Sp for forward and ?@ for backward pro-
gram analyses.

5. DESIGN OF A SPACEz.OFcAPPROXIMATE ASSERTIONS

5.1 A Very Reasonable Assumption

Assume that for a specific-purpose analysis of
prcgrams a subset 7%A of assertions has been found
to provide meaningful information.

Since any invariant assertion P<A for any pro-
gram must have an upper approximation Q in ~, the
set {Qc~ : P=>Q} must be non empty.

Let PeA be an assertion and assume that we want
to analyze a program m using the merge over all paths

eemantic analysis and an entry condition Q which is

an upper approximation of P in X. What is the best
choice for Q ? It is clear that if P=> Q’=>Q then
FT[’C,Q’)=>Fn[T,Q) and by isotony the analysis

Z~p(Fn[T,Q’]l is more precise than Zfp(FT(’T,Q)).

Hence Q muet be a minimal upper approximation of P
in ~ (that is such that {P*Q A ‘(~Q’e ~-{Q] :
P-Q’ A Q’=> Q]}). Assume that the set U of mini-
mal upper approximations of P in ~ has a cardinality
greater than 1. What is the “best” possible choice
for Q in U? If Q1,Q2cU and QIzQ2 then QI and Q2 are

not necessarily comparable so that Z~p(FT(T,Ql)) and

2@(FT(T,Q2)) may be not comparable. Hence “best”

cannot be defined using the preciseness criterion
provided by the ordering ~. The only way to deter-
mine which of the two alternatives will be the most
useful in order to answer a given set of application
dependent questions about the program is to try both
of them. Also the best choice may vary from one
program to another. This try and see choice method
leads to a non-determinist analysis method which is
unacceptable because of obvious efficiency consider-
ations. Therefore it is reasonable to choose ~
such that Card(U)=l.

Example 5,1.0.1

Assume that A= (2x2)+73 where Z is the set of
integers and ~= {A(x,yl.[Px(x) APY(Y)] : PX,P ●

{Au.faZse,lu.u20,Au.usO,Au.trv@]}. The aese~tton
P=k(x,y). (x>O A y~Ol has ‘two distinct minimal upper

approximations in A namely QI ‘A[x,Y). [x20 A YSOI
and Q2 =k[x,yl .(x20 A YSO). Now the choice of the
most useful upper approximation of the entry asser-
tion P is program-dependent. For example the best
choice is QI for the program x:=x+Y. This positive
declaration can only be justified by performing the

two semantic.analyses (i.e. SP(X:=X+YIIQI) =
I(x,yl. (xzy A y201 and Sp(x:=x+y)(Q2] = A(x,y). (x>y

A Y~Ol) and nex’c comparing them, Since these anal-

yses are not related by the ordering ‘>, the comar-
ison criterion must be application dependent. For

example using QI we can prove that sp(~x.x+Y)[Ql ~

X(x,y). (x~O) whereas this is impossible with Q2. On

the contrary the best choice is Q2 for the Program
x:=-x; X:.x+y since sp(x:=-x; X:=X+y)(Q2) = ~[x,yl.
(x<y A y<(i) which impliee l(x,y). (x<O) whereas

sp[x:=-x; X:=X+Y)(QII = AIX,Y1. (X~Y A Y~Ol doss not

imply l(x,yl. (xSOl.

End of Example.

If any program must have an ~nalysis which can
be approximated from above using A, and the process
for deriving the most useful approximate analysis of
any program is required to be determinist then it is
reasonable to make the following :

ASSUMPTION 5.1.0.2

The set ~zA of
chosen such that for

upper approximations

THEOREM 5.1.0.3

For all PeA the

approximate assertions must be
all PCA ~he set {Qc~: P=>Q} of
of P in A has a least element.

set

alement if and only if ~

contains the supremum of

conjunction).

{Qc~:P+Q] has a laast

is a Moore fti2y (i.e. T
A and is closed under

5.2 The Approximation Operator

DEFINITION 5.2.0.1 Approximation Operator

p < A+Z
p . lP.A{Q61 : PsOI

O(P) is the least u~per approximation of p in,. ,.
7, Since ~ is a Moore family it follows from
Monteiro &Ribeiro[42,Th. 5.3and 5.11 that :

THEOREM 5.2.0.2

[1) ‘p is an upper closure operatol” (that is P is
isotone [if P,QcA and P-Q then Pap,
axtensive (for all PCA, P=> P[P)] and idempo-
tent [p=p”P)

(2)- P[A) =~

(3) -P is the unique upper closure oparator on A
such that P(A) =~

Since ~ is equal to the image of ‘the complete
lattice AC=>,lX.faZse,kx.t~ue,v,Al by the upper clo-
sure operator p we derive from Ward[42,Th.4.1] the
following :

THEOREM 5.2.0.3

(1]-~is a complete lattica PIAI(=>,P(~x
Ax.*zw,ls.P(%),A)

faZse ) ,

2) -p is a quasi-complet~ join-morphism i.e.
VSGA, p[VS) = p(vp(S))]

3) -7$ is a complete sub-lattice of A iff p is a com-
plete join-morphism (i.e. WSSA, P[VS) ‘VP(S))
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If the initial choice of ~ does not satiefy

assumption 5,1.0.2 we can use the following :

THEOREM 5.2.0.4

If IsA, the upper closure operator P on A such
that p(A) ie the least Moore family containing X is :

p = lP.A{Qc{Tu {kX.-b-Wll : P=Q}

p(A) = A{S : ss~u{~x.true}} A S:@}

Exanple 5.2.0.5

Returning to example 5.I.o.I where A=(Z+B)
and ~= {ku.~~LS@,lu.u20,ku.u<O,Xu.~pu@} the least
Moore fam~ly containing ~ is the one containing
Au.~n@, A and the meets of the non-empty subeets
~ that is the complete lattice :

Au.true

Au.u<o

9

AU.U20

Au.u=o

‘Au.false

The corresponding approximation operator

P = Ap.if p=Au.YaZse then Au.fa2se

is :

of

End

5.3

els{~ P=>~u.u=O then ~u.u=O
etsif P=> Au.u~O then Au.u20
ekif ?=> Xu.u~O then lu.u<O
else Au.trwe fi

of Example.

Representation of the Lattice of Approximate

Assertions
,,

In order to represent the approximate asser-
tions in a computer memory we must use a complete
lattice A(!=,l,T,lJ,fll such that the similar algebras
7i=p(A) (=>,lX.faZsa,iX.tzwe,AS.p [vSI,AI and AIE,I,
T,u,n) be isomorphic. Let ye [A+~l be the corres-
ponding lattice isomorphism. Let CIC(A+AI be

-1
Y “P. a(P) is the representation of the least

upper approximation of the assertion PCA whereas

Y(QI provides the meaning of QeA. The connection
<a,y> between A and A has the following propert’y :

DEFINITION 5.3.0.1

r

Let Ll[~I) and L2(G2) be posets. <~,y> is a
pa~p of adjoined functions if and only if :

- uc [Ll +L2) is isotone
- y< (L2+LI) is isotone

VXCLI, WycL~, {X EIY(y)} e {a(X] E2y}

(Contrary to Scott[72] ’sdefinition, L1 and L2
are not required to be continuous lattices and a, ‘Y
need not be continuous].

THEOREM 5.3.0.2

If p is an upper closure operator on A, the
image y(A) of A(E,l,T,U,n) through the lattice iso-
morphism y is equal to p(A) (-, p(kX.~aZse),XX.*ru@,

AS,p(VS),A] and a, = ~-~op then

- <a,y> is a pair of adjoined functions

. - a is onto, y is one-to-one

Reciprocally the approximation process can be defined
by the lattice A[51,T,l],nl and a pair of adjoined
functions. Such a pair @.,y> defines a Galois con-

nection between A and the dual of A :

DEFINITION 5.3,0.3

Let Ll(sl) and L2(E2) be posets, ae (L1+L2),
y= (L2+L1). The pair <u,y> defines a GaZo;s eon-
nec~~on between L1 and Lz if and only if :

(1) -a is antitone (Vxl, x7.~L1, {XI 51 x2} ‘>
{arxl132a(x2)}l

(21 -y is ant’it’one Wy1,y2eLZ, {yl E2Y2} “
{y(yll 21y(y211)

(31 -AxcL1. (xI SI y’J~
(4) -lyeL2, (y) 52 ~“y

The above conditions [3) and (4) are equivalent
to : VXCLI, VycL2, {XEI y[y)] + {C4(X) 22 Y]

(Birkhoff[67]), hence we have :

THEOREM 5.3.0.4

Let LIIs1), L2(s21 be posets, ac (LI+L2)J
yf(L2+Ll). <~,y> is a pair of adjoined functions

if and only if <a,y> defines a Galois connection
between LIIGII and L~[Ell =L2(221, [i.e. iff a and
y are isotone, lxox51yoa, aoyE21y.yl

Theorem 5.3.0.4, 0re[44,Th.2] and pickert[521

imply :

cOROLLARY 5.3.0.5

r

Let LI(S1] and L2[s2) be posets and ~e (LI+L2).
y~ [L2+L1] be adjoined functions :

[1) -YOU is an upper closure operator on LI, UOY is
a lower closure operator on Lz(i.e. isotone~
reductive [a”y~a x.x) and idempotent)

Moreover if LI(EI,ll,TI,UI,D1) and L2(E2,J2,T2#U2Jf12)
are complete lattices then :

(2) -YOCI(LII and aoY(L2) are comPlete lattices. ~
is an isomorphism from yoci(LI) onto CIOY(L2) and
y is an isomorphism from CXOY(L2) onto YOCX(L1)

(31 -Each function in the pair <cx,y> of adjoined
functions uniquely determines the other, more
precisely :

(3.1) -a =Ax~Ll.n2{y~L2 :x% Y(Y]}
[3.2)-Y=AY~LZ.UI{XeLl :a[xl~2Y}

(41 -U is a complete join-morphiem, ~(11]=J2, Y is a
complete meet-morphism, Y(T2]=T1

In complement we will need the following :

THEOREM 5.3.0.6

T

Let Ll(SI,ll,T1,l]I,Vll and Lz[52,~2,T2,D2s~2)
be complete lattices and ~c (L1+L2), Y< (L2+L1~ be

I adjoined functions :

I (l; -a is onto (eur~ectivel if and only If y is one-
to-one [inject~ve) and if and only if a“y ‘
AycL2. [y)

(2) -if one of the above conditions holde then
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- y = Xye L2.Ul{Xc LI : a(x)=yl

- a is an isomorphism from the complete lattice

yoci[Ll) onto the complete lattice L2 the in-

verse of which is Y.
(31 -a is one-to-one if and only if y is onto and if

and only if yoa = AxsLI. (x)

We use the notation LI~ci,Y>L2 to state that LI
and L2 are connected by the pair <CI,Y> of adjoined

functions which are respectively subjective and in-
jective. If a is a complete join-morphism from LI
onto L2 (respectively y is a one-to-one complete
meet-morphism from L2 into Lll we write L1~cx,>L2
[L1P<,Y>L2) and assume that the adjoined y(a) is
determined by 5.3.0.5.(3.2) (5.3.0.5.(3.111.

In the literature the meet usual method for
defining a program analysis framework is to specify
the complete lattice A(G,l,T,U,~] representing ap-
proximate assertions and to informally deecribe the
meaning of its elements (e.g. conetant propagation,
Kildall[73], Kam&Ullman[77]). Hence the function
Ye (A+A) remains implicit.

It is often the case that A is’ only assumed to

be a (complete] join-semi-lattice A(=,T,U) (or dual-
ly meet-semi-lattice for some authors] but since an
infimum is adjoined to A it is in fact e complete
lattice (even when the meet-operation is not used or
what is called meet is not n (e.g. Wegbreit[751)l.

When Y< (A+A) is isotone but not a complete
meet-morphism the set y(A] does not fulfill assump-
tion 5.1.0.2 with the consequences examined at para-
graph 5.1. The design of y(A) and A can be revised
as stated by theorem 5.2.0.4.

When ye (A+AI is a complete meet-morphism but

not one-to-one, several distinct elements of A have
the same meaning. Since this is useless, the deeign
of A and Y can be revised as follows :

THEORE~ 5,3.0.7

Let AIE,l,T,U,fl) be a complete lattice and
ye (A+A) be a complete me~t-morphism. L~t IS~ [A+AI

be Ax.~{yeA : Y(X]=Y(Y)}, A=cf(Al, ~=[Y\A) :

- b’xeA, y(x) ‘y[O(X])

- u is a lower closure operator on A

- y is a one-to-one-complete meet-morphism from the

complete lattice A(E,l,OIT),U,~S.C(nS)) into A

Since y(A) =7(X), A and ~ have the same expres-
sive Dower. Among all subsets of A which have the
expressive power of A, X is
nality.

THEOREM 5.3.0.8

r
[11- VLGA, {YIL)=YIA)I=>
[2)- VLSA, {Y(L) =Y(A)} +

one with minimal cardi-

{IS(LI ‘~}

{Card[~l SCard(Ll}
I (31 - ‘dxcAiVy&% {yix)=y[y)}=> {ysxl

6. EQUIVALENT METHODSFOR SPECIFYINGA SPACE OF

APPROXIMATE ASSERTIONS

A space o+ approximate assertions

fied either by a Moore family or by an
can be speci-
upper closure

operator. Moore families can be characterized using
definition 5.3.0.2 or theorems 5.1.0.3 and 5.2.0.4.
In addition to theorems 5.2.0.2. (1) and 5.3.006 we

now study and examplify various equivalent methods
which can be used to define an upper closure opera-
tor.

6.1 Least Closure Operator Greater than or Equal
to an Arbitrary Function

THEOREM 6.1.0.1

Let L(E,l,T,U.n] be a comPlete lattice and
‘c[L+L).

Let LscJc([L+L)+[L+ L)) be kf.[~x.U{f(Yl :YSx~l

iso(f) is the least isotone operator on L greatar
than or equal to f
Let ezrte([L+L)+(L+L)) be Af.[kx.[xUf[x)]].
ad(f) is the least extensive operator on L
greater than or equal to f

Let ~dec ([L+L)+(L+L)] be Ax.[zuis(f ](x)] where
h&[f)(x) is the limit of the increasing and

8
ultimately constant sequence {X } such that XO=x,

8+1
for every ordinal 6, X =f(X61 and for every

limit ordinal ~, X6 = U Xa
~<~

eb(f) = ‘tde(ezt(_tso(f)]) is the least closure
operator graater than or equal to f and eZO(fl(L)
is the greateet Moore family contained in f[L)

i.2. Definition of a Space of Approximate Assertions
by Composition of Upper Closure Operators

The composition of two upper closure operators
m A is usuallv not a closure operator (Ore[qal]..
However the space of approximate assertions call be
designed by successive approximations using the
following composition of upper closure operators :

THEOREM 6.2.0.1

Let LIS,l,T,U,n) be a complete lattice, p an
upper closure operator on L and n ba an uPPer closure

operator on P(L). Then rIOp is an upper closure oper-

ator on L and PS~OP.

ExampZe 6.2.0.2

Many program analysis frameworks are designed
in order to describe some properties of each program
variable but so that the relationships among the
values of these variables are ignored. An example

is Jones & Muchnick[76]’s type determination scheme,
a counter-example is the determination of linear
relationships among numerical variables, Cousot K
Halbwachs [78]. The corr~sponding approximation can

be characterized as follows :

Assume that ~=Qm, let Am be [~+~1 and Al be (D+B).
Let us define :

Vjc[l,m], ISj:(Am+AI)

0 =a.PcA .[XX<~.[~<V ,...,V v>
j m 1

j-l,vj+l>..nJ m

evm-1 ,.. .,vm)~l
: ‘(vi’ ””””vj-l ‘X’vj+l

o=[A +A I

Cr=XP!m.~X[X ,...,xm)dl[’.[ T o (Pl(xj)ll
1 j=l 3
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o is an upper closure operator on Am and an assertion
PeAm does not state relationships among the program
variables if and only if O(P)=P. The approximate as-
sertions on each individual program variable xj are
next defined using an upper closure operator Pj on
A~. The induced closure operation p on O(AMI 1s de-

fined by p(P) =k[xl, . . ..xm~. .~ P.(Pj)(xjl where Pe
~=1 J

o(Am) is [necessarily) of the form P= a[xl, . . ..xm).
m

It follows from theorem 6.2.0.1 that thej~lPj(Xj).

composition :

pQO=APEAm.[A(Xl, . . ..Xm)~O[.[ ~ pj(~j(pl)(xj)ll
j=~

is an upper closure operator on Am.

End ofExarnple.

6.3 Definition of a Space of Approximate Assertions
by Means of a Complete Join Congruence Relation

Considering the equivalence relation (PI induced

by an upper closure operator p on A and defined as
P~Q(p) if and only if P(PI =p(Q), the approximation
process can be understood as essentially consisting
in partitionning the space of assertions so that no
distinction is made between equivalent assertions
which are all approximated by a representant of their
equivalence class. Since the approximation is from
above and a least one must exist (assumption 5.1.0.2)
not all equivalence relations are acceptable :

DEFINITION 6.3.0.1

Let L(E,l,T,u,n) be a complete lattice. A bin-
ary relation 6 on L is a eompzete .join-congruence
rezation if and only if :

(11 -e is an equivalence relation
[21 -o satisfies the join-substitut~on property :

‘dx,y,ueL, X~y[8) ~ XUU = yUU(6)
[3) -o satisfies the ~oin-completeness property :

WxeL, x= U[xlf3 (8) where [xIO={YCL :x~y[el]
is the congruence class containing x.

THEOREM 6.3.0.2

If p is an upper closure operator on L(~,l,T,
J,n) and 14x,ycL, xsy(p) if and only if p(x)=p[y]

then :

(11 -(P) is a complete join-congruence relation on L
(21-P = Ax. u([xl(pll

Reciprocally a complete join-congruence rela-
tion on A defines an upper closure operator on A
whence a space of approximate assertions :

THEOREM 6.3.0.3

relation (satisfying 6.3.0.1. [11 and 6.3.0.1. [2)].

It can be compared with Gr%zer& Schmidt[581’s
theorem which is relative to congruence relations.

THEOREM 6.3.0.4

4A reflexive and symmetric binary relation 6 on
a complete lattice Lf5,1,T,U,n) is a join-congruence
relation iff the following three properties are sat-
isfied for x,y,z,t~L :

[11 -{x:y(6)}~{3ueL : (x~Jy)GuA U=X(6) A U=y(6)]

(21- {x5y5zA X=y(6) A y=Z(6)}+ {X=2(8)}
(3)- {X~yA X=y(o)]+ {(Xht):(yht) (8)]

E&arnpZe 6.3.0.5

Let V be a non-empty eet of integers included
between two bounds -m and +~ (either V=.zU{-m,+~}
and ~iez, -ca<-~<i<+~<+~ or {-co,+co} 52 and V ={iez :

-~<i<+~]l. The binary relation e defined on A =.
[~+~) by :

{P= Q(6)} = {tim{xCV :p(X)}= ti~{X~V:Q(Xj ] A
{rnac{x=U : P[xl} =max{xcV : Q(x)]}

(where min(@l =+~ and rnax[@) =-m) is a complete join
congruence relation. The quotient lattice L/@ is

isomorphic to P(A) where p is the upper closure
operator induced by o :

p = lP.v[[Ple)
XPEA.[lxeV.[min{y : p(y)}~x~mady :P(YIIII

In conjunction with 6.2.0.2, P can be used for sta-
tic analysis of the ranges of values of numerical
variables [Cousot &CousotE77al).

End of Exar?pZe.

6.4. Definition of a Space of Approximate Assertions
by Means of a Family of Principal Ideals

The equivalence classes of the complete join-
congruence relation [PI induced by a closure opera-
tor p have the followin~ property :

THEOREM 6.4.0.1

fit e be a complete join-congruence relation on
the complete lattice L(E,l,T,U,n), then WxcL, [xIO
is a complete and convex sub-join-semilattice of L.
[Let us recall that SSL is eo~oe~ iff a.bcS, c=L

land a= c=b imply that CCSI -

Here is another representation of convex sub-
join-semilattices of L (which can be compared with
Gr3tzer[71]’s representation of convex sublattices)

An ideaZ is a nonvoid subset J of a lattice

L(E,l,LI) with the properties (al {{aeJ,xeL,x Ea}

‘> {xcJ}] and (b) {{acJ,beJ} *{a UbcJ}]. It is

easy to show that J is”an ideal when (aUb)=J holds
if and only if aeJ and beJ (Caste property). Since

L has an inf.i.mum 1, the intersection of an infinite
family of ideals in a lattice L is an ideal of L.

Given an element a in a lattice L, the set

{XCL :xGa} is evidently an ideal: it is Called a
p?’tneipal ideaz of L. If every ascending chain in

L is finite, every ideal is principal.
A semi-ideaZ is a nonvoid subset I of L with

the propgrty {{acI, xcL.x Ea]=>{xeI}]. The dual
notion is the one of duaZ semi-ideal.

Let 8 be a complete join-congruence relation on
the complete lattice LIE,l,T,U,n). Ax. U[[XIO) is
an upper closure operator on L.

(Similar results were already proved in Cousot
& Cousot[77b] except that the above definition of
complete join-congruence relations has baen substan–
tially simplified].

The following result can somatimes facilitate
the proof tha’c a given relation is a join-congruence
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THEOREM 6.4.0.2

(11 -Let 1 be a principal ideal and J be a dual semi-
ideal of a complete lattice L(~,l,T,l..l,ll). If
InJ is nonvoid then InJ i.s a complete and convax

sub-join-semilattice of L.

[2] -Every complete and convex sub-join-semilattice
C of L can be expressed in this form with
I={xeL:xE (UC)} and {XCL:{lYeC :Y5X}}SJo

THEOREM 6.4.0.3

7. DESIGN OF THE APPROXIMATEPREDICATE TRANSFORMER

INDUCED BY A SPACEOF APPROXIMATEASSERTIONS

In addition to A and Y the specification of a
program analysis framework also includes the choica
of an approximate predicate transformer t~(~+ (A+A))

[or a monoid of maps on A plus a rule for associa-.-
ting maps to program statements [e.g. RosenL78Jl).
We now show that in fact this is not indispensable
since there exists a best correct choice of T which

I Let {IieA} be a family of principal ideals of is induced by ~ and the formal semantics of the con-
the complete lattice L(E,l,T,U,nl containing L. Then
Ax.U{nIi : i~A A xeIi} is an upper closure operator
on L.’

Exwnp U

The
analysis
bles :

(where 1.

6.4.0,4

following lattice can be used for static
of the signs of values of numerical varia-

T

:

@

Zo $

0 +

1

.
-~ +, -, Zo, $, T r~spectively stand for

Ax.faZse, Ax.x<O, AXOX>O, Ax.xsO, Ax.xzo, XX.X20,
Ax.true]. A further approximation can be defined by
the following family of principal ideals :

sidered programming language.

7.1

tion
with

A Reasonable Definition of Correct Approximate
Predicate Transformers

At paragraph 3, given (~,A,T] the minimal asser-

which is invariant at point i of a program T
entry specification @ was defined as :

P= v T(p)($)
i

pcpaz%[il

Therefore the minimal approximate invariant asser’ci.on
is the least upper approximation of Pi in F that is :

P(F’il = P( v T(p) [o))
pcPath(i]

Even when path~i) is a finite set of finite paths the
evaluation of ‘r(p)(~) is hardly machine-implementable
since for each path p=al, . . ..am the computation se-
quence XO =$, Xl =TIC(al))(Xo], . . . . xm=~(c(a~~l(xm-l)

does not necessarily only involve elements of A and
(~+~) . Therefore using ~c~ and t&(L_+(~+~)) a
machine representable sequence 70=$, xl=~(c[all)(~ol,

Tm=7[C(am]][~m_lJ is used instead of XO, . . ..XM. . . .
which leads to the expression :

11 12

which induces an upper closure operator

n

and the space of
ample 5.2.0.5)

LJ

approximate assertions

;\

P:

rused in ex-

Tha choice of ~ and ~ is correct if_and only if Qi
is an upper approximation of Pi in A that is if and
only if :

(v ;(p)($)) - p( v ~(p)(~))
p=path(i) pcpatk[i)

In_pa~ticular for the entry point we must have $ ‘>
P(~)=$ so that we can state the following :

DEFINITION 7.1,0.1

(1) -An appr~xi~ate predicate transformer
tc[L+(A+Al) is said to be a eorrget upper

[2) -

approximation of TC(L+(A+A)I inl=p(A) if
and only if for all 4wA, ~c~ such that $~~
and program m we have : MOPT(T,@l ~MOPm(t,~)
similarly if AD<a,Y>A, t~(L+(A+A)) is said

to be a correct upper approximation of
Tc(L+(A+Al) in A=a(A) if and only~f V@, ‘@:

$*y(Tl, Vw, a(MOPm(T,$)) E MOPm(t,@]l,——
(i.e. MOPT(T,$) ~ Y(MOPT(t,$)))

This global correctness condition for ~ is very
difficult to check since for any program ~ and any
program point i all pathe pepatk(il must be consi-
dered. However it is possible to use instead the
following equivalent local condition which can be
checked for every type of statements :

End of ExonipZe.
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THEOREM 7.1.0.2

[1) -Ze (L+(~+~ll is a c~rrect
of ~= (L+(~+AII j.n A.p(AI
-C(SI (PI - t(sl [p)}

[21 “te (L+(A+AII is a correct
o+ TC (L+[A+A)) in A=u(A)

{ifSe~, VPCA, a(’r(S][Y[P))) 5

upper approxim@ion
iff {W3e~, VPCA,

upper approximation

(where AHCI,Y>AI fff
t(sl(Pl}.

If ~c [L+(~+~II is ~ correct upper approxima-
tion of~c (1-+ (A+A)) in A=P(A) we have MOQTIT,$)
~ MOPT[t,p(@)) whence p(MOPT(t,$) )-> MOPm(t,p($) ].
The cases when equality holds are not easy to distin-
guish. Yet the following sufficient condition turns
out to be ueeful afterwards :

THEOREM 7.1.0.3

(1) -If ~ is a correct upper approxima~ion of T in
p(A) and {VSe~, VPeA, p(T[S](p)]= t[S) [p(p)]}
then ‘vm, V$, p[MOPr(T,@)] =MOPT(~,P($)l

(2) -If t is a correct upper approximation of T in
A where AD<GX,Y>A and {vscL., VPCA, CI(T(S) [P)) =
t[Sl(a[Pl)} then Wr, V@, a(MOP~(T,@)) =
MOPn(t,a(@ll

Similar results hold for fixpoint analysis of
programs :

THEOREM 7.1.0.4

Let te[L+(A+A)l be an isotone correct upper

approximation of Tc(L~(A+A)), in_.A=~[A] where
4DQ,pA then W$CA, W$e A:$=>y($), VT,

[ll-Fm(k,T) is isotone andao~n[T,$)OY~Fm(t,Tl
(2) -a[lJ%(Fm(T,$l)) EZ@[Fm(t,$l)

(31-If $=Y(~ and {VS=L, VPeA, CY,(T[ S](P)] =
t(Sl(a(P)l} then equality holds in (2)

Notice that in theorem 7.1.0.2 the maps {~(Sl :. .
SCLJ are not assumed to be isotone. yet i~otony is
assumed in theorem 7.1.0.4 and is a customary hypo-
thesis in the li’cerature. An apparent justifica-
tion of this additional requirement gs to ensure
that the system of equations X=Fm(t,@) [X) associa-
ted with a program IT has fixpoints which can be
obtained as limits of iteration sequences. But
this could also be achiev~d without isotony hyp~-

thesis taking AX.XUFT(t,$l (Xl instead of Fn(t,$) :

THEOREM 7.1.0.5

Let te(L+(A+A)) be a correct upper approx-
imation of TC[L+ (A+A)) in A=u[A) where ADQ,Y>A
then !4$cA,V3CA : ~=>y(~], VT,

[l) -aOFm[T,@)OYE Fm(t,T)
(2) -a(Z@(Fm(T,0)]) E Zuis[Xx.xU Fm(t,~l(x)l[ll

(where ZU~S(F] [l) is the limit of the station-
6 ($-1

ary iteration sequence XO=l, X =F(X ) for

6 ~~6XU for limit ordi-successor ordinals, X =
nals)

Hence the isotony hypothesis is even not nece-
ssary for technical purposes. However the profound
justification of this hypothesis can be found in the
fact that among all possible approximate predicate
transformers” which can be used with a given set A of

approximate assertions the designer of a program ana-
lysis framework intuitively thinks ‘co the best

approximate predicate transformer which happens to

be isotone. This property also explains the fact
that no significant counter-examples to the isotony

hypothesis have ever been found.

7.2 The Best Approximate Predicate Transformer
Induced by a Space of Approximate Assertions

DEFINITION 7.2.0.1

r

If ~1, F2 ar~ correct upper apprcxim@ions of
tc(L+ [A+A)) in A=p(A] then we say that tl iS

bette~ tlmn~z iff~or all &~ and all programs n,
MOPn(tl,~l ‘> MOPT(tz,~)

LEMMA 7.2.0.2

r

Let ~1, ;2 be correct upper app~oximations of
T~[L+_[A+A~) in fi.p(A). If (v~cL, tl[S)~72[S]~

and [tl or tz is isotone) then tl is better than tz.

(Notice that the above isotony condition is suffi-
cient but not necessary).

THEOREM 7.2.0.3

Let~~e kSeL&[k~C~.[PIT(Sl (Pllll

(1] -~scL, T~S)_E [A+A) is isotone
(2) -t~(L+(A+A)) is a c~rrect upper appro~imation

~f T=[L+ [A+A)) in A=P[A) iff {VSCL, T(S) =>
~(sl}

(3) -T is the best correct upper approximation of T

in A

COROLLARY 7.2.0.4

r

If A%,,y>A(5,1,T,U,n] then
kscL.[AP~A.[~(T(sI (Y(P)) 11 is isotone, it is the

best correct upper approximation of T in A.

The most interesting consequence is that we
have in hand a formal specification of the programs
which have to be written in order to implement any

specific program analysis framework once A and y
have been chosen. As a challenge to automatic pro-

gram synthesizers let us consider a simple

ExampZe 7.2.0.5

Coming back to examples 6.2.0.2 and 6.3.0.5
assume that V“is the set of integers included bet-
ween two bounds -m and +CCand V.Omo For simplicity
we shall assume that m=2. Let L be the complete

lattice {l]U{[a,b] ia,bc~ A a~b] with ordering [a,b]
5 [c,dl iff asb~c<d and 1 is the infimum”. Let y’ e

(L+(~+~)) be such that yg(ll=Ax.&Lse, y’[[a,b])=
Ax. (a~x~b). Let Abe ~DLwhere LDM= {xny :

xcL A yeM} and XUY = zf x=1 or y.L then C.L,L> else
<X,y> fi. Let yc(A+A).where A=[02-+B] be
A<x,y>. [Y’[xl Ay’ (y]).

Given A and Y let us determine the best corract
upper approximation of Sp in A. Again for lack of

space we just study the case of sp(A<x,y>. [xsy]].

Since y’ is an injective complete meet-morphism
the adjoined function u’E[(O-+B]+L) is determined
by 5.3.0.5. [3.1) : a 1 .~p-if p=Ax.faZse then 1 Qlse

[m-bz{x : P(x)],macdx :PIx)]I f;. The same way, a. e
(A+L13L) is XP.(a’(Ux(P) )lla’[CSy(Plll where LSx =

AP.[XX.[3YCQ :P[X,Y)II and CJY=XP.[XY.[]XEQ :P(X,Y)]I
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According to theorem 7.2,0.4 the best upper ap-
proximation of sp(A<x,y>m(x<y)) in A is t.

W’sp[a<x,y>. [xsy))oys If P@A equals <1,1> then t(P)=
<1,1> else p.<[a,b],[~,d]> where a<b and ~<d in which

case t[P)=a[Q) where Q=a<x,y>.(a<x<b A c~y<d A X<y)O
IJx(Q)=kx. (3y : a<x<b A c<y<d A x<y).~x. [a<x<b A

mczx[c,x]sdl =Ax. (a<x~b A xsd) since csd. The same way
Oy(Q)=ky. (r??czZ[c,a)Sy<d] . Therefore t(P) =~~ a>d then
<1,1> ezse <[a,m-ln[b,d)],[max(c,a),d]> j%=<[a,b]fl

[-m,d],[c,d] fl[a,+~]> proving that this choice in
Coueot ECousot[77al was optimal.

End of Exanp le.

.ExampZe 7.2,0.6

Some program analyses (such as “reaching defi-
nitions”, “available expressions”, “live variables!?,
. . . Aho &Ullman[77]) are “history sensitive” because
the approximate assertions which are useful at each

program point p characterize sets of sequences of
states [or execution paths from the entry point to p)
and not sets of states. In such a case Hoare[781’s
formal definition of languages using sets of sequen-
tial traces is more convenient that the deductive
semantics of paragraph 3.

7.2.0.6.1. Associating a Set of Traces with a

Program

Given a universe ~ of values, a set La of ele-
mentary assignments, a set L.t of elementary tests,
the set of s@quentiaZ traces is the free monoid
T[;,o] generated by L= LaULt.

The concatenation operation “.” is extended to
elements of the complete lattice ‘zT(G,@,T,u,nl
by S;T={s;t:ses A tcT].

Let us define a forward “set of tracestransfor-
mer” fte (L+[zT+2T)) as As.EIT.[TJ{s]II. The set
of traces associated with a program 7T and an entry
specification $cASLt is MOPn(ft,{$}l.

7.2.0,6.2. Approximating a Set of Traces by an

Assertfon Characterizing the Descendwts
of the Entq States

The connection with the deductive semantics of
paragraph 3 is made using aE(2?_+A) such that for
any set T of traces, u(T) characterizes the poseible

descendants of the entry states (belonging to ~]
when the traces teT are executed. From an [obvious
hence not given here) operational semantics of se-

quential traces we derive that u=AT.[v{~~(t) :teT}]
where a’E(T+A) is euch that u~(<>).lxcV.tr~e and
b!3eL, vteT, a’(t;s]=sp(s] (a~[t)),

Since a is a complete join-morphism from 2T
onto A, thaorem 5.3.0.5.(3.21 defines an adjoined
function y.5[A+2T).

According to theorem 7.2.0.4 the best correct
upper approximation of f% in A is R=As=L.CXP=A.
[a(ft(sl [y(Plllll. VSeL, ‘wIPcd, we have R(Sl (P)=
a[ft(s) (y(Pl)l=a[y(P1. {sl l=cx[{t.s
v{a~(t;s) : t.y,P,, :V{SP,S,(JIJ::Y1!+:;;,.
Since VSCL, sp(S) is a complete v-morphism, W(S)(P)=
sp[s](v{a~ (t] : tcy(P)}) =sp[sl(a(y[Pl)l =sp(sl[Pl
[theorem 5.3.0.5.(1)). Hence the best correct upper
approximation of j% in A is Spm

Since ?4s~L, ft(Sl and sp(S) are complete join-
morphisms, b’T~T, a(ft(S](Tll =sp(S)(a(Tl] and bt$cA
sLt, o,[,{~}l =$ theorems 9.1.0.1 and 7.1.0.3.(2) im-
ply that for all programs 7T, a[Zfp[Fm(fp,{$]))] =
Cl(MOPT(fp,{+})) = MOPT(SP,I$) = ZfPIFm(sp,@l).

7.2.0.6.3. Justifying the Data Flow Equations of
llAvai~ble E~r@SS~OnSr’

Let E be the set of expressions. The set
avaiz(t] of expressions which are available at exit
of a path teT is defined by avaiZ[<>)=@ and VSCL,

czOaiZ(t;Sl = (avail[t) ntrans[S)) Ugen(S] where
trans(S) is the set of expressions in ~ not killed

by the command S while gen(S] is the set of expre-
ssions generated by S.

An expression is available at some program

p~int q if it is available at exit of every path
from the entry point ni to q. Therefore the set of
expressions available at q ie Cl(MOPm(fP,f.lX.tP2@})q)
where ae(2T+2E] is AT.n{avaiZ[t] :tcT}.

Since u is a complete join-morphism from
2T[~,@,T,u,n) onto zE(~,E,@,n,u), theorem 5.3.o.5.
(3.2] defines an adjoined function y.

According to theorem 7.2.Q.4 the best correct

upper approximation of ft in 2k is at =
AScL.ElEe2E.[a[ft(s] [y[E)]l ]]=k.[kE.[(E ntm-zs(sl)

ugen[S]ll. Since ‘dT=l_, U(ft[S) [T)) =at(S)[a(Tl)
and ct({xX.trwe]l =@ and VSeL, at(Sl is a complete
join-morphiem on 2E[2,E,@,rl,U), theorems 9.1.0.1

and 7.1.0.3.(21 imply a(MOPm[@,{kX.trwe})) =
MOPm(at,@] =Zfp(Fm(at,@)]. Notice that Fm(at,@]
(as defined at paragraph 2 taking L[5,1,T,U,nl
to be zE(z,E,@,n,u]] is the classical system of data
flow equations for available expressions (Aho&
Ullman[77]) and that the largest possible solution

(least for ?1 is desired.

End of ExqZe.

8. HIERARCHY OF PROGRAM ANALYSIS FRAMEWORKS

Once the semantics of programs has been defined

by (A,T) all program analysis frameworks [A,t,y)
are specified up to the isomorphism Y by (P(AI,
kS.[pOT(S)]l where p=y.a is an upper closure
operator on A and AMO,,Y>A. Program analysis
frameworks can be partially ordered using the order-

ing of the corresponding closure operators on A
since whenever PI E P2, P2(A] ZPIIAI so that program
analysis frameworks corresponding to PI yield sharp-
er information than the ones corresponding to P2
(whichever global program analysis method is used].

The following theorem is a constructive version

of Ward[42,Th.5.3] :

THEOREM 5.0.1

The eet of upper closure operators on a com-
plete lattice L(E,l,T,U,n) is a complete la’ctice
eZOIL+Ll [E,Xx.x,Ax.T,AS.ide [US],n).

ExampZe 8.0.2

In order to briefly illustrate the hierarchy
of program analysis frameworks, let us consider
three comparable examples the approximation func-
tion of which can be sketched using a geometrical
analogy. Let P be a predicate over two numerical
variables x and y the characteristic eet of which
is the following :

Y

L

+ P[x,y)

+.+ +
+
+

o x
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The upper closure operator of example 5.2.0.5
defines a very rough approximation consisting in ap-
proximating this set by the quarter of plane contain-
ing all its point!s :

A more precise approximation (example 6.3.0.5]
consists in approximating the characteristic set of
P by the emallest rectangle including it and whose
sides run parallel with the axee :

]@
y y/,,

P(P) [X,Y)

/

o~ x

A refinement consists in approximating the char-
acteristic set of P by its convex-hull :

Y pa/+flp
PIPI(X,Y)

//+

o~x

The corresponding framework was used for the automa-
tic discovery of linear restraints among variables

of programs [Cousot &Halbwachs [78]).

End of Example.

90 MERGEOVERALL PATHS VERSUSLEAST

ANALYSIS OF PROGRAMS

9.1 “Distributive” Program Analysis

We recalled at paragraph 4 that

FIXPOINT GLOBAL

Frameworks

once a program
analysis framework [A,t,y) has been designed, the
program-wide analysis problem has various solutions
including the merge over all paths and least fix-
point solutions. It is known [Kam EUllman[77]l that
when A satisfies the ascending chain condition and
WSCL, t(S) is isotone we have MOPm[t,$) E

Z~p[Fm[t,@]]. Also the additional hypothesis that
V!%L, t[Sl is a join-morphism (sometimes called

join-distributive map) implies MOPm(t,@) =
Zfp(Fn(t,$)]. Slightly more general is the fol-
lowing :

THEOREM 9.1.0.1

r

If AIG,l,T,U,N) is a complete lattice and
tc(L+[A+All ie such that WSe/-, t(S) is isotone
then for all programs IT and &A, MOPm(k,$) E
Z@[Fm[t,@ll. If moreover tfSeL, t[S] is a complete
U-morphism then MOPT(t,$)’ =Z~p(Fm(t,$)].

(This theorem is implicitly used at paragraph 3
taking A= (~+B)(=>,lX.faZse,XX.tTwe,v,A) for A(S,l,
T,u,n] and either sp or Z@ for t).

If AD<a,Y>A and ‘cc[L+ (A+A]] then the above
theorem establishes the correctness of Zfp[Fn[t,$)]

with respect to NOPT(t,@). In the literature the

correctness of MOPm[t,$l is generally taken for gran-
ted. Also MOPn(t,$) is considered ae the desired

solution to program-wida analysis problems since
whenever some t(S] is not a complete join-morphism
PIOPn(t,$) can be strictly better than Z~p[Fn(t,@l].
When A satisfies the ascending chain condition

Z~(Fm(t,@ll is computable, which is not necessarily
the case of MOPm(t,@). In that case a variety of
methods can be used [e.g. Rosen[78]) which can find

sharper information that fixpoint methods and there-
fore approach the ideal merge over all paths solution
which provides the maximum information relevant to

A, t and Y.
In our opinion ‘the above argument is not entire-

ly convincing since for different correct approximate
predicate transformers tl, t2~[L+(A+A)) ;;g:~e~e
the case that Z@[FT[tl,$l lEMOPm(t2,@l.
to relieve from the burden of badly chosen approx-
imate predicate transformers the argument must con-
sider the best approximate predicate transformer
relevant to A (theoram 7.2.0.4). Then the following
result is a useful complement to theorem 9.1.0.1 :

THEOREM 9.1.0.2

Let ~e(L-+(~+~)1 be the best_correct uPP@r
approximation of Te(L+[A+All in A=P[A~. If P(AI
is a complete eubla’ctice of A then MOpT[~.@) =
Z~~[F=(~,$)).

ExampZe 9.’1.O.3

If A= (Z+B) and ~=Y(Al where :

. T

1

and y[ll=Au.@Zse, Y(-l=ku. [u<Ol, Y(OI=AU. (U=OI, etc.
then~is not a sublattice of A since Y(-)vY(+]~y(A).
The merge over all paths analysis of the program :

{f x>O then tih;Ze x#O do x :=-x; od; fi;
[which is powerful enough in order to determine that
the while-loop does not terminate) is strictly better
than the least fixpoint analyeis (which fails to die-

cover that 1 is invariant on the exit path of the
loop] .

End of Examp Le.

9.2 “Non-Distributive” Program Analysis Frameworks

The marge over all paths analysis of a program
using some “non-distributive” program analysis frame-

work can always be defined by means of the least
fixpoint of a system of isotone equations associated
with that program :

THEOREM 9.2.0.1

Let AIG,l,T,u,n) be a complete la’ctice,
te(L+(A+A)) be an approximate predicate trans-
former, 2A[s,@,A,u,nl be the complete lat’cice of all
subsets of A. TC(L+(2A+2A)) be k3.[lP.{t(Sl (x):xeP}]
apd U.C(2A+A) be AP.[ UP].

“\
V. cL, T(S) ie a complete u-morphism

:< Wr\’d@EA, p[ZfP(Fm(T,{$}))) = MOPm(t,$)
\

The above construction is not fully satisfac-
tory since ~~A,T) is not isomorphic to [A,t] whan t

is a complete\\Join-morphism, so that the choica of
(2A,T) in ordeh,to define FIOPT[t,$) as a least

\
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fixpoint is unnecessarily too complicated. The fol-
lowing construction is preferable :

LEMMA 9.2.0.2

r

Let LIE,l,T,U,n) be a complete lattice and~,

~~[2L+2L) be defined as :

ii= lli.~fii=$ then ~,else {lJs : se(2H -@)} fi

~= AH.zf H=@ theno eZse {~s : SG(2H -011 f;

V and ~ are upper closure operators on ZL.

Let 0C(ZL+2L) be the join ZU-tSIEUUI of ~ and
~ in the lattice of upper closure operat~rs on zL,

(theorems 6.0.1 and 6.1.0.1). VHc(2L -@), fJ(H] is
the least complete sublattice of L containing H.

LEMMA 9.2.0.3

r Let P be an upper closure operator on L[Z,L,T,
u,n). Then lI=kx.~{yea(p[L]) : x~y] is the great-

est closure operator on L which is less than or equal
to p and which is a complete join-morphism.

THEOREM 9.2.0.4

(1) -Let P be_an_upper closure operator on A,
tlc(L+ (A+A)] be a correct upper approximation
of TC(L+[A+AII in~=p(A). Let rIe(A+A) be
lPeA{QCO(p(A) ?:P~Q} and tze(L+[n(A)+n[A))]

be AS.[~OTIS]]. Then liT, @eX,

p(Z~P(Fm(t2,$)ll + MOPm(tl,$l

Moreover p(Z~p(FT[t2,$)ll = MOPm[tl,$l whenever one
of the following three conditions holds :
(2)-p ie a complete join morphism and tl=k3.[po~(S)]
(3)-W%L, vPe~, p(T(s)(Pll=t (s) (P(P))

i(4) -o(P(A))=u(P(AI) and tl= s.[poT(s)]_is the best
correct upper approximation of T in A=P(AI.

ExwnpZe 9,2.0.5

Coming back to example 9.1.0.3 where A= (Z+131
and p(A) ={lu.~aZse,Au. (u=O),lu. (u<O),XU.(U<O),
Au. [u>Ol,Au. (u201,Xu.~rue} and applying theorem

9.2.0.4 we get T)(A) =P[A] u{Au. (u*OI} so that accor-
ding to 9.2.0.4. [3), W, t@ep[A),
P(Zfp[Fm(lS. (rIOT(S)l,@))) = MOPT[~S. (POT(S)),$).

End of Exwnp le.

It is clear that
ding chain condition,
9.2.0.4 may lead to a
assertions n(A) which

when P(AI satisfies the ascen-
the construction of theorem
refined space of approximate
does not satisfy the ascending

chain condition. Then the iterative computation of-
Zfp(Fn(kS.[TloTIS)],$)) may not be naturally conver-
ging in a finite number of steps. Nevertheless this
least fixpoint can be approximated from above using
an extrapolation technique in order to accelerate
the convergence of the iterates. Such a technique
was developed i.n Cousot 8Cousot[77al using a “wide-
ning operator” vc(rI(A)xvIA) +rIIA)). In our case a
possible choice of V is k<P,Q>.[p(Pv Q)l. Thie
choice will guarantee that the refined fixpoint anal-
ysis (based on 11 and VI will be more precise than
the original one (based on p) (but other application
dependent definitions of V might even be more effi-
cient) .

10. COMBINATIONOF PROGRAMANALYSIS FRAMEWORKS

The ideal method in order to construct a pro-

gram analyser (to be integrated in optimizing com-
pilers or program verification systems) would consist
in a separate design and implementation of various
complementary program analysis frameworks which could
then be systematically combined using a once for all
implemented assembler. In thie section, we show that
such
gned
that
gram
sion

10.1

an automatic combination of independently desi-
parts would not lead to an optimal analyser and
unfortunately the efficient combination of pro-
analysis frameworks often necessitates the revi-
of the original design phase.

Reduced Cardinal Product of Program Analysis
Frameworks

THEOREM 10.1.0.1

Let (Al,tI,yl), (A2,t2,y2) be two program analy-
sis frameworks such that Alp<,yl>A, A2P<,Y2>A and
tl, tz are correct upper approximatione of T in Al,
42,. The direct product (A,t,y) of (Al,tl,Yl) and
[A2,tz,Y.2) is defined as A=AIXA2, t=tlxt2=lS.[k<Pl,p2>.
[<tl(S) (Pl),t2[S)(P2)>]], Y=1~P~,P2>. [y~(PI)AY2(P2)].

[’l] -b’TT, W$lCA1, W$2CA2, MOPn(t,<@l,$z>) = ,
<MOPm(tl,$l] ,MOPm(t2,@z)>

(2) -If moreover tl and ‘cZ are isotone, then

Lfp[Fr[tlxtz,f$l,$z>l) =
<Z@(Pm[tl,@l)),Z~p[Fm(tz,$z) )’

This definition of direct product is not satis-
factory since y is not necessarily injective and t
is not necessarily optimal. Hence given a global
program analysis algorithm we can get sharper infor-
ma’cion than the one obtained by the separate analyses
just by revising the definition of A and t as stated
in theorems 5.3.0.7 and 7.2.0.4 :

THEOREM 10.1.0.2

- Let [Al,tl,yl) and (A2,t2.,y2) be two program anal-
ysis frameworks such that AI D<aI,Y1>A,
A2DQ2,y2>A, tl =AS. (alOT(S)Oyl] and t2 =
lS. [a20T[S10y21 are respectively the best upper

aPProximation of T in A. Let CT=([AIXA2 )+[AIXA21)
be defin~d as l<P1.Pz>.n{<Ql,Qz> :Y1(PII AYZ(PZ1 =

y*[oll Ay2[Q21}.

The redueedprodwt (A1,tl,yll* [A2,t7,yzl is
(A,t,y) where A= 0[AIXA2) (S,l,CJ(T),U,AS. (’U( (7S1)),
t= kS.[aOTIS]Oy], Y= 1<PI,P2>. (YI(P1) Ay2[p211,
a= aP. (o[<aI(Pl,a2[P)>l 1

Awa,Y>A, kK3eL, [ci.T(S).y) =u[(tlxt2] (S)) and

this inequality can be strict.

Since YOCt=YIOaI Ayzoaz, CT(A1 XA2) is a repre-
sentation of the space o; a~proximate assertions
corresponding to the meet of the closure operators

YIO~l and Y20a2 (theorem 8.0.1) viz. to the join
{nP:P s yl(AI] UY.2(A2)} of the Moore families
yl(A1) and Y2[A21.
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Exarnp le 10.1.0.3

T T

1 L

1

Yl(ll=ax,fazse, yI[ol=XX. (X=o), YI(!I=AX. (X20), yl[~)=

ixo(x~Ol, Yl(T)=ax.tme, y2[l)=Ax.faZse, y2(ev]=
kx.(x~dhb 2 = O), y2(od)=Ax. [xmociuZo 2 = 1),

y2(T]=kX.t~tle, b’x~Al, b’ycA3,, a(<x,l>)=~(<~,y>]=
U[<O,od>)=<l,l>. U[<O,ev>).U[<O,T>]=<O, ev> otherwise

G(<x,y>)=<x,y>. The product is :
<T, T>

<$,

<1,1>

The following program (Manna[74 ,p.179] computes
YS ‘X:2 (with the convention 0° =11 for every integer
XI and natural number X2 :

{1}
<y18y2,y3> := <X1,X2,1>:

{2] Unt<zy2=o do

{3}
z~ odd(yz] then

{4}
<yz,y3> :Z<Y,2-’l,~l*Y3>;

{51
else

{6} ~Y19Y2~ := <yl*y1,y2div z>;

{71 fi;
~81 od;

The fixpoint analysis with entry condition

~(yl,y2,y3,xl,x2) .(x2~O] USing Al leads to the fOl-
lowing result for the variable yz :

The fixpoint analysie using AZ leads to the follo-
wing result for the variable y2 :

I {1} {2} {3} {41 {5} {6} {7} {8}

y2 T T od ev ev T T ev

According to theorem 10,1.0.1 the direct product of
the above analyses cannot yield sharper information.
On the other hand using the reduced direct product
[A-{<1,1>])5 U{<<l,l> ,,..,<1,1>>} and the correspond-

ing optimal approximate predicate transformer (which
takes account of the rule <$,od>-1 = <$,ev>) we get :

{1} {2} {3} {4} {5} {6} {7} {8}

y2 <?,T> <;,T> <$,od> <Z,ev> <$,=”> <.t,T> <;,T> <O,QV>

Remcmk 10.I.o.4

Let L][El], Lz[=z) be posets. The cardinal sum
of L1 and L2 is the set of all elements in LI or Lz,
considered as disjoint. When LI(~I,lI,TI,mI,UI) and
L2[Ez,12,T2,h2,n2] are complete la’ttices we can de-
fine the disjoint sum L1+L2 as LI uL2u{L,T} with
ordering x~y iff (x=1) or (y=T] or (x,yeLl,and x51Y)
or (X,YCLZ and xE2y). The meaning of elements of

L1+L2 can be defined as Y(l]=Y1(ll] AY2(12], Y(x]=

Y1[x) if x~LI, Y[X)=Y3.(X) if x~L2, Y(T)=Ax.~~~e. Even
when yl and y2 are one-to-one complete meet-morphisms,

y may be neither one-to-one nor a complete meet-
morphism. In order to satisfy assumption 5.1.0.2 the
set YIL1+Lz) must be completed using theorem 5.2.0.4.
Then it turns out that the least Moore family contain-
ing Y[L1+L21 is equal to y! [L1*L21 [y! as defined in
theorem 10.1.0.2]. Therefore the use of disjoint sums
amounts to the use of reduced products.

End of Rema~k.

10.2 Reduced Cardinal Power of Program Analysis
Frameworks

The cardinal power L\l with base L2[E2,12,T2,
Llz,il.),and exponent L1(51,11,TI,UI,!%) (hereafter
noted 2SO(Ll+ Lz)[5,1,T,U,nl ] is the set of all iso-
tone maps from L1 to Lz with f~g if and only if
f(x) EZg(xl for all x in L1. Two program analysie
frameworks [Al,tl,yl] and (Az,tz,yzl can be combined
by letting geZ.S0(Ll+L21 mean that for all x in Al,
yz(g(x)) holds whenever yl(x] holde.

THEOREM 10.2.0.1

The reduced cardinaZ power with base [Az,tz,Yzl
and exponent (Al,tl,yl) is (A,t,y) where
A= O(ZSO(A1+A2)), OG[iso(AI-*A2) +iso(AI+A2)] is
Ag.n{feiso[Al-+Azl : Y(f)=y(g)}, Yc(iso[Al+A2)+A)
is ~g,[~X,A{y~ [v] (X]~y2(g[v]) (Xl :VCAI}],

t=k. [UOT(S)OY) and w(A+~so(A1+A211 is
kP.[O(aV.[a2(P AYI(v111)1.

Ab<~,Y>A and VSe~, t(S) ~lg.[Av.U,2{tz(S) (g(z]) :
ZCA1 A tl(Sl[zl ~v]l [with Lh2@‘12).

Example 10.2.0.2

Tz

1.2

Yl(lll=Y2(121 =A(b,xl.@tse, yl(Tl)=Yz[Tz)=A(b,x].tme,
yl(tl=a(b,xl. (bl, yl(f)=l(b,x) .(-b), Y2(-1=
A(b,x). (x<O), etc.

The analysis of the program :

{1}
x :=100; b :=t.vue;

~21 tih~te b &

{31
x :=x-l;

{4}
b := [x>O);

~5j od:
End of Exomp le.
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using the reduced cardinal product of Al and A2

yields no information since no relationship can be
discovered between b and x.

Following theorem 10.2.0.1 we determine that if

gc(Al+Azl then Y[gl=(Yl (i5)AYz [g(t))v(Yl[~)AYz (g(~)].
Therefore O[gl=h where h(lll=lz, h(t)=g(t), h(~)=

g(~], h(Tl)=g[t)Uzg(f’). It follows that cs[iscJ(A1+A211
is isomorphic to ({t,~}-+A2) (or A2xA2).

The syetem of equatione aeeociatad with the
above program and the entry specification kb.T2 is
then :

gl = ~b.~~ b=t then + else 12 f$

gz = ab.z~ b=t then gl[t)Llzgk(tl e2se 12 fi
g3 = Ab.decr(g2[b)l

g4 = ~b.~~ b=t then [g3[t)n2+l L12 (g3wn2+)

ekif b=~ then (g3(t)Hz1]U2(g3(f]~z~) fi
gs = ab.i~ b=fthen gl(f)&g4[f) Q2SQ 12 j%

where~deer(lz)=lz, deer(Ol=deer[-)=decr(ll=-,
deer[+)=$, de@[*O)=deer($)=deer(T2] =T2.

The iterative resolution of this eystem of equa-
tions starting from the infimum kb.lz yields y(gl)=

Y[gz)=x(b,x) .(b Ax>Ol, Y[g3)=X[b,xl .(b Ax~Ol, Y(g4)=
k(b,x). [[b Ax>O]v(-b Ax=O]) , y[gsl=k(b,x] .[-b Ax=O).

End of Example.
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